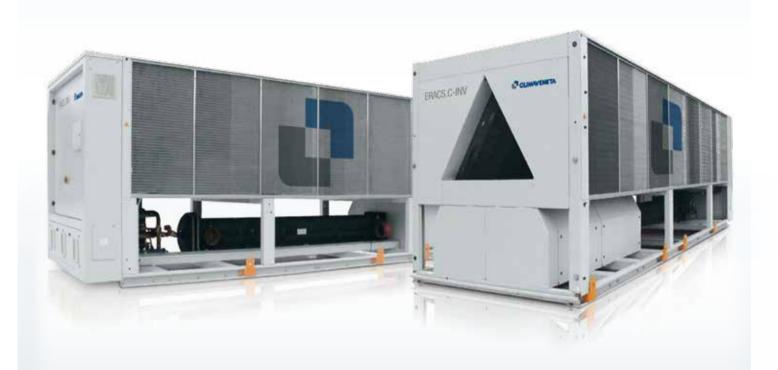


Cooling Capacity: 288~1502kW



GB First Class

Unit Features

CLIMAVENETA "ERACS.C-INV" high efficiency screw chiller has introduced the latest technology from Italy which can obviously reduce the total investment and operation cost without conventional cooling tower, cooling water pump and the cooling system.

The unit can be installed on the building roof or outdoor that no extra plant room is needed.

The ERACS.C-INV units are optimized for all commercial and industry application.

Inverter Screw Type Compressor

- Semi-hermetic screw compressor specially designed for HFC134a with higher compression efficiency under full load as well as part load:
- Precisely manufactured twin-screw rotor with aircraft-grade bear featuring in high reliability, low noise, low vibration and stable running;
- The inverter motor drives the bear directly with fewest moving components and wearing parts that causes no energy loss and is with higher
- mechanical efficiency;

 Automatically adjust power output according to load by microprocessor.

Inverter Fan

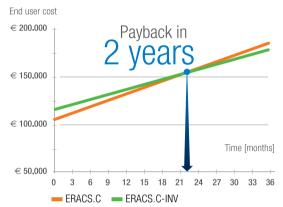
High efficiency exterior rotor inverter fan from German brand. It can reduce the energy consumption and fan noise.

Super Low Noise

All compressors of ERACS.C-INV series are installed on the vibration isolator. The rubber pad is also fixed between compressor and frame to prevent vibration and noise. The fan is exclusive designed with aircraft grade blades and aluminum-cast exterior motor as well as the air deflector cylinder to eliminate air side noise.

Green Technology

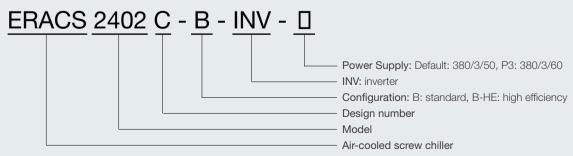
- Environment friendly HFC134a
- Optimized refrigerant system for better electric saving, lower CO₂ emission and higher operation efficiency.



Electronic Expansion Valve

EXV, with high-sensitivity and precise control, has high adaptability of partial load working condition. And it can improve the efficiency of the unit under full load as well as part load.

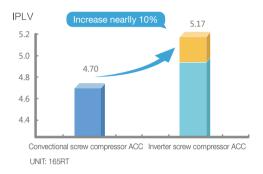
Cost Saving


Compared with conventional units, INVERTER series can have the payback in 2 years.

Reliable Operation

The unit is designed, manufactured, tested according to international and local standard AHRI, EN, UNI, JIS, GB/T18430.1 for reliable performance. And the electrical system is also strictly designed and produced comply with standard IEC60204-1/GB5226.1. The unit is controlled by the dedicated microprocessor control system. In order to protect the operation safety, the high/ low pressure switch, over/ under voltage, phase failure, over load, winding over heat, gas exhaust temperature, water flow switch and oil heater are all equipped. Casing protection confirms with GB4208-2008.

Nomenclature

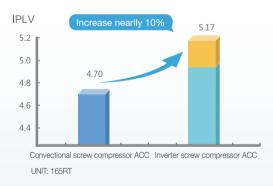


ERACS2402C-B-INV

ERACS.C-INV series inverter air cooled screw chiller with model of 2402, R134a refrigerant, power supply 380/3/50.

Energy Saving

ERACS.C-INV adopts inverter screw type compressor integrated with latest inverter technology. It has higher part load efficiency and more precise control accuracy. IPLV@AHRI can achieve up to 5.17, 10% higher than convectional screw units, with higher operation efficiency.



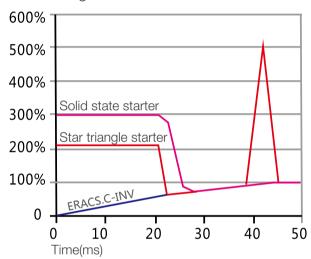
Project Reference

Background: Adulto in south China, building 4000m2, conditioning 3500m² **Unit Selection:** Comparison between a 165RT convectional and inverter screw compressor air cooled chiller

AC load	Load percent	100% 75%		50%	25%		
AU IUdu	Time(%)	1 42		45	12		
Unit operating time	Cooling power consumption time/h	36	1512	1620	432		
Screw air cooled power	Convectional kW.h	6,415	153,166	94,608	13,219		
consumption	Inverter kW.h	6,563	143,791	79,704	11,059		
Annual electricity cost saving	10,000 RMB	2.6					

Note: Electricity price 1RMB/kW.h

Achievement: Operating cost saving achieve 10% when using INVERTER series screw compressor air cooled chiller compared with convectional screw compressor air cooled chiller.


Summary: Inverter series screw compressor air cooled chiller has higher IPLV value. It is suitable for applications with unstable cooling load demand and running at part load most of the time, such as hotel, hospital, shopping mall, office buildings, etc.

Excellent Performance

The standard harmonic distortion rate THD of the unit meets the requirements of IEC61000-3-4 and GB/T17625.


In accordance with IEEE-519 and GB/T14594-93 requirements for harmonic distortion, the total harmonic distortion rate THD can be as low as 5% or less, and the compensation correction displacement power factor is 0.95 during the operation of the unit. The inverter adopts refrigerant cooling and the optimized piping design which ensures cooling of the inverter and avoids unnecessary cooling capacity loss.

Starting current/Nominal full load current

EC Fan(optional)

Energy saving can reach 42% with EC fan compared with convectional fan due to its high efficiency.

Advanced Control System

A brand-new control system is equipped with the features of friendly human-machine interface, excellent controls and adjustments ability, strong capabilities of function expansion, monitoring and management, as well as strong compatibility.

Friendly human-machine interface

The touch screen is embedded in the unit for convenient operation and well protection. The automatic control by the computer realizes unattended operation.

LCD screen can display data and parameter adjustment in various languages and menus. According to the tradition of Climaveneta, the status and parameters of the compressor are visually displayed individually to make sure the operating status clear at a glance.

Unit Control and Operation Management

The advanced microcomputer intelligent control system of W3000 contains specially designed control algorithm of Climaveneta. It highlights the energy efficiency and reliability of the unit. The balanced running time of FIFO compressor prolongs the life of machine. The automatic adjustment of the output load makes the machine more energy saving. Combining with the load shedding system of the compressor, 25-100% stepless adjustment can be achieved and settings of the operating parameters can be adjusted, which is adaptable to different environments. The temperature and pressure protection using analog measurement can predict and prevent failure and increase reliability. Various expansion accessories are available, such as remote and group control.

Network Communication and Building Management Control

The chiller supports BMS connection and can connect to common BMS systems such as MODBUS, LONWORKS, BACNET and so on.

Fault Protection, Alarm and Analysis Capabilities

The microcomputer intelligent controller contains perfect functions of fault protection, alarm, recording and analysis. It has protection functions of high/low pressure switch, lack of phase, reverse phase, overload, overcurrent, overheat, exhaust temperature, water flow, frost and so on. The controller also achieves fault recording and alarm display. The unique "Black Box" fault recording and analyzing system can record 400 failures and more than 200 field data before each failure. It can diagnose and remove faults rapidly to improve the technical support ability. By connecting to the Climaveneta remote service program, it can find potential failures before they occur and take proper preventive treatments.

Microprocessor Control Features

Microprocessor	W3000	Microprocessor	W3000
Remote on/off with external volt-free contact	√	Energy limit function	OPT
Multi-language menu	√	Manual control	√
Phase sequence relay	√	ModBus communication protocol	OPT
Cumulative fault alarm	√	BACNET communication protocol	OPT
Alarms code function	√	LonWorks communication protocol	OPT
"BLACK BOX" function for alarm events	√	Pump control	OPT
Self-test when power on	√	Backup pump control	OPT
Real time programming of daily/weekly program	Par.	Water temp. set-point regulation from external signal(4-20mA)	OPT
Evaporator inlet/outlet water temp. display	√	Remote electic relay control	OPT
Compressor/unit alarms display	√	Local/remote monitor (FWS)	OPT
General unit alarms display	√	Remote secondary temp. control	OPT
Entering water temp. ratio control	√	Set-point regulation from external signal (0-5V)	OPT
Start/stop operating timer	Par.	Compressor run-timer, time balance & FIFO	√
Double set-point timer	Par.	Compressor start scheduling	√
"Pump-Down" when stopped			

/ Standard

OPT avaiable on request

Par. available by modifying a value of the configuration parameters

Technical Data

ERACS.C-INV(-P3)		0701HE	0821HE	0951HE	1051HE	1201HE	1301HE	1501HE	1651HE		
Cooling Capacity	kW	287.5	336.4	374.3	418.9	470.0	507.9	573.4	632.6		
Power Input	kW	76.4	92.3	101.7	112.4	128.8	143.9	163.2	179.2		
Chilled Water Flow	m³/h	49.5	57.9	64.4	72.1	80.9	87.4	98.7	108.9		
Chilled Water Pressure Drop	kPa	35.3	37.2	38.7	32.0	40.3	42.9	36.0	37.2		
Microprocessor			W3000								
Compressor											
Qty.		1	1	1	1	1	1	1	1		
Refrigerant Circuit No.		1	1	1	1	1	1	1	1		
Stepless Energy Regulation		27~100%									
Fan											
Qty.		6	6	8	8	10	10	10	12		
Air Volume	m³/s	33.9	33.9	42.0	44.8	52.8	52.8	55.6	63.6		
Fan Power Input	kW	2	2	2	2	2	2	2	2		
Refrigerant											
R134a Charged	kg	66	80	82	102	102	105	117	121		
Oil	kg	17	17	21	21	25	25	25	25		
Dimension											
Length	mm	4000	4000	4000	4900	4900	4900	5800	5800		
Width	mm	2260	2260	2260	2260	2260	2260	2260	2260		
Height	mm	2450	2450	2450	2450	2450	2450	2450	2450		
Operation Weight	kg	3640	3970	4130	4900	5260	5300	5820	6160		

Note:

Working condition: Chilled water (in/out) 12/7°C ; Ambient temperature 35° C

Technical Data

ERACS.C-INV(-P3)		1902	2102	2402	2652	2952	3302	3602	3902	4252
Cooling Capacity	kW	670.8	745.1	839.3	931.0	1037.0	1152.0	1270.0	1374.0	1502.0
Power Input	kW	188.2	209.4	241.5	265.4	295.0	332.1	356.2	379.7	424.1
Chilled Water Flow	m³/h	115.5	128.3	144.5	160.3	178.6	198.3	218.6	236.4	258.5
Chilled Water Pressure Drop	kPa	50.5	56.8	48.0	40.5	50.2	30.7	37.3	46.4	56.1
Microprocessor			W3000							
Compressor	Compressor									
Qty.		2	2	2	2	2	2	2	2	2
Refrigerant Circuit No.		2	2	2	2	2	2	2	2	2
Stepless Energy Regulation		20~100%								
Fan										
Qty.		12	12	12	14	16	16	20	24	24
Air Volume	m³/s	63.6	61	65.3	72.5	82.9	79.8	101.2	127.2	127.2
Fan Power Input	kW	2	2	2	2	2	2	2	2	2
Refrigerant										
R134a Charged	kg	109	120	133	147	186	198	220	235	246
Oil	kg	42	42	50	50	50	50	60	60	60
Dimension										
Length	mm	5800	5800	7000	7000	7900	7900	9400	11200	11200
Width	mm	2260	2260	2260	2260	2260	2260	2260	2260	2260
Height	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450
Operation Weight	kg	6220	6550	7780	7840	8860	9330	9880	10680	10780

Note:

Working condition: Chilled water (in/out) 12/7°C ; Ambient temperature 35°C

Technical Data

ERACS.C-INV(-P3)		0701HE	0821HE	0951HE	1051HE	1201HE	1301HE	1501HE	1651HE		
Cooling Capacity	kW	284.6	333.1	370.6	414.7	465.4	503.0	567.8	626.5		
Power Input	kW	76.1	92.0	101.2	111.9	128.2	143.2	162.4	178.4		
Chilled Water Flow	m³/h	44.5	52.1	58.0	64.9	72.8	78.7	88.8	98.1		
Chilled Water Pressure Drop	kPa	28.6	30.2	31.3	25.9	32.6	34.8	29.1	30.2		
Microprocessor			W3000								
Compressor											
Qty.		1	1	1	1	1	1	1	1		
Refrigerant Circuit No.		1	1	1	1	1	1	1	1		
Stepless Energy Regulation		27~100%									
Fan											
Qty.		6	6	8	8	10	10	10	12		
Air Volume	m³/s	33.9	33.9	42.0	44.8	52.8	52.8	55.6	63.6		
Fan Power Input	kW	2	2	2	2	2	2	2	2		
Refrigerant											
R134a Charged	kg	66	80	82	102	102	105	117	121		
Oil	kg	17	17	21	21	25	25	25	25		
Dimension											
Length	mm	4000	4000	4000	4900	4900	4900	5800	5800		
Width	mm	2260	2260	2260	2260	2260	2260	2260	2260		
Height	mm	2450	2450	2450	2450	2450	2450	2450	2450		
Operation Weight	kg	3640	3970	4130	4900	5260	5300	5820	6160		

Note:

Working condition@AHRI: Chilled water (in/out) 12.2/6.7°C ; Ambient temperature 35°C

Technical Data

ERACS.C-INV(-P3)		1902	2102	2402	2652	2952	3302	3602	3902	4252
Cooling Capacity	kW	664.2	737.8	831.1	921.8	1027	1141	1257	1360	1487
Power Input	kW	187.4	208.4	240.4	264.1	293.6	330.5	354.5	377.9	422.1
Chilled Water Flow	m³/h	103.9	115.5	130.1	144.3	160.7	178.5	196.7	212.9	232.8
Chilled Water Pressure Drop	kPa	41.0	46.0	38.9	32.8	40.7	24.9	30.2	37.6	45.5
Microprocessor			W3000							
Compressor										
Qty.		2	2	2	2	2	2	2	2	2
Refrigerant Circuit No.		2	2	2	2	2	2	2	2	2
Stepless Energy Regulation		20~100%								
Fan										
Qty.		12	12	12	14	16	16	20	24	24
Air Volume	m³/s	63.6	61	65.3	72.5	82.9	79.8	101.2	127.2	127.2
Fan Power Input	kW	2	2	2	2	2	2	2	2	2
Refrigerant										
R134a Charged	kg	109	120	133	147	186	198	220	235	246
Oil	kg	42	42	50	50	50	50	60	60	60
Dimension										
Length	mm	5800	5800	7000	7000	7900	7900	9400	11200	11200
Width	mm	2260	2260	2260	2260	2260	2260	2260	2260	2260
Height	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450
Operation Weight	kg	6220	6550	7780	7840	8860	9330	9880	10680	10780

Note:

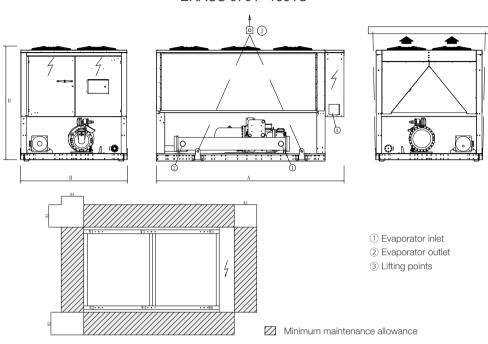
Working condition@AHRI: Chilled water (in/out) 12.2/6.7°C ; Ambient temperature 35°C

Electrical Data

	Compressor		Compressor		Fa	an	Unit			
Model	Qty.	FLI(kW)	FLA(A)	LRA(A)	FLI(kW)	FLA(A)	FLI(kW)	FLA(A)	SA(A)	
0701HE	1	108	180	267	12	25.8	120	206	103	
0821HE	1	124	207	267	12	25.8	136	233	116	
0951HE	1	138.7	240	285	16	34.4	154.7	274	137	
1051HE	1	153.7	265.6	365	16	34.4	170	300	150	
1201HE	1	176.3	304	459	20	43	196.3	347	173.5	
1301HE	1	192	331	459	20	43	212	374	187	
1501HE	1	216	365	506	20	43	236	408	204	
1651HE	1	236.5	402	628	24	51.6	260.5	454	227	
1902	2	126	218	285	24	51.6	276	488	244	
2102	2	140	241	365	24	51.6	303	535	267	
2402	2	160	276	459	24	51.6	345	604	302	
2652	2	174	301	459	28	60.2	377	663	331	
2952	2	196	332	506	32	68.8	424	732	366	
3302	2	215	366	628	32	68.8	462	801	400	
3602	2	236	403	715	40	86	512	891	446	
3902	2	253	432	850	48	103.2	554	966	483	
4252	2	271	463	850	48	103.2	591	1030	515	

Note:

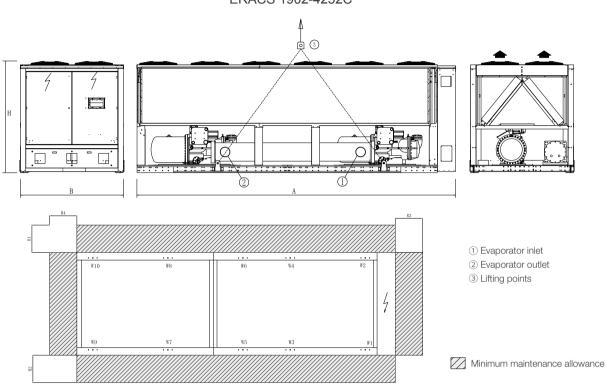
F.L.I. Power input L.R.A. Locked rotor current for single compressor


F.L.A. Current absorption S.A. Starting current

Power input 380V-3Ph-50Hz (60Hz), voltage tolerance $\pm 10\%$, voltage unbalance 3%.

All the values are referred to the maximum working condition. Energy restriction function can be equipped when energy supply is not enough.

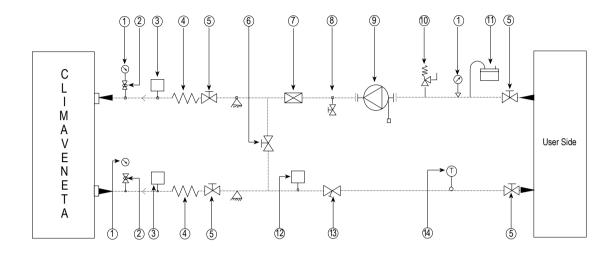
Unit Dimension


ERACS 0701--1651C

		Dimension	s		Mainte		Evaporator pipe connection			
Model	А	В	н	Operating weight	R1	R2	R3	R4	IN/C	DUT
	mm	mm	mm	Kg	mm	mm	mm	mm	Туре	ф
ERACS 0701C-B-HE-INV(-P3)	4000	2260	2450	3640	2000	2000	1800	1500	Victaulic	4"
ERACS 0821C-B-HE-INV(-P3)	4000	2260	2450	3970	2000	2000	1800	1500	Victaulic	5"
ERACS 0951C-B-HE-INV(-P3)	4000	2260	2450	4130	2000	2000	1800	1500	Victaulic	5"
ERACS 1051C-B-HE-INV(-P3)	4900	2260	2450	4900	2000	2000	1800	1500	Victaulic	6"
ERACS 1201C-B-HE-INV(-P3)	4900	2260	2450	5260	2000	2000	1800	1500	Victaulic	6"
ERACS 1301C-B-HE-INV(-P3)	4900	2260	2450	5300	2000	2000	1800	1500	Victaulic	6"
ERACS 1501C-B-HE-INV(-P3)	5800	2260	2450	5820	2000	2000	1800	1500	Victaulic	6"
ERACS 1651C-B-HE-INV(-P3)	5800	2260	2450	6160	2000	2000	1800	1500	Victaulic	6"

Unit Dimension

ERACS 1902-4252C



Dimension			s			Evaporator pipe connection				
Model	А	В	Н	Operating weight	R1	R2	R3	R4	IN/C	DUT
	mm	mm	mm	Kg	mm	mm	mm	mm	Туре	ф
ERACS 1902C-B-INV(-P3)	5800	2260	2450	6220	2000	2000	1800	1500	Victaulic	6"
ERACS 2102C-B-INV(-P3)	5800	2260	2450	6550	2000	2000	1800	1500	Victaulic	6"
ERACS 2402C-B-INV(-P3)	7000	2260	2450	7780	2000	2000	1800	1500	Victaulic	8"
ERACS 2652C-B-INV(-P3)	7000	2260	2450	7840	2000	2000	1800	1500	Victaulic	8"
ERACS 2952C-B-INV(-P3)	7900	2260	2450	8860	2000	2000	1800	1500	Victaulic	8"
ERACS 3302C-B-INV(-P3)	7900	2260	2450	9330	2000	2000	1800	1500	Victaulic	8"
ERACS 3602C-B-INV(-P3)	9400	2260	2450	9880	2000	2000	1800	1500	Victaulic	8"
ERACS 3902C-B-INV(-P3)	11200	2260	2450	10680	2000	2000	1800	1500	Victaulic	8"
ERACS 4252C-B-INV(-P3)	11200	2260	2450	10780	2000	2000	1800	1500	Victaulic	8"

Water Flow Data

Model	Min.	Max.				
iviodei	m³/h	m³/h				
0701HE	21.30	93.89				
0821HE	27.39	94.90				
0951HE	30.10	122.11				
1051HE	36.90	125.78				
1201HE	36.90	125.78				
1301HE	40.21	131.90				
1501HE	52.88	175.90				
1651HE	52.88	178.99				
1902	52.88	181.40				
2102	52.88	195.91				
2402	80.50	181.40				
2652	80.50	227.48				
2952	80.50	227.48				
3302	115.31	356.62				
3602	115.31	356.62				
3902	115.31	329.80				
4252	115.31	329.80				

CLIMAVENETA Chiller Water Circulation System Schematic

- 1. Water pressure gauge
- 2. On-off valve
- 3. Automatic exhaust valve
- 4. Flexible joint
- 5. Check valve
- 6. Bypass water pipe
- 7. Strainer

- 8. Drain valve
- 9. Circulating pump
- 10. Safety drain valve
- 11. Expansion water box
- 12. Target flow switch
- 13.One way valve
- 14. Temperature display gauge

Reminding for CLIMAVENETA chiller water circulation system pipe layout

- 1.Install an automatic vent valve at the highest point on the chilled water circulation line.
- 2. The evaporator inlet and outlet of the unit must be equipped with a rubber soft connection, including the cooling water inlet pipe of the chiller.
- 3.A flow switch is required on the horizontal pipe of the cooling water and the chilled water, and is interlocked with the electric control system of the unit.
- 4. When installing the chilled water circulation pump pipeline, a short-circuit circulation pipe is needed at the inlet and outlet of the evaporator and a shut-off valve on the short-circuit circulation pipe to make water circulation, decontamination and then confirm the water quality. The unit can be connected only after the quality is OK.
- 5.A strainer (60 mesh or more) must be installed at the inlet of the evaporator to ensure that the circulating water of the evaporator does not contain any impurities such as metal material, welding slag, steel wire, etc.
- 6.In order to ensure that the heat exchanger of the unit is not corroded, according to the chemical characteristics of copper, the influent water must not contain corrosive ions such as chloride ions, ammonia ions and sulfur ions. In hard water area, a qualified softened water device need to be installed to make the influent calcium bicarbonate content within the national standard.
- 7. For outdoor installations, the outdoor pipeline section should be equipped with drain valves. When the unit is not in use, the water should be completely emptied to avoid freezing the pipeline and the unit.
- 8. Check valve should be installed on evaporator inlet and outlet.

Global Headquarter

Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A. 36061 BASSANO DEL GRAPPA (VICENZA) ITALIA - VIA SARSON 57/C TEL: +39 / 0424 509 500 (r.a.) FAX: +39 / 0424 509 509

E-mail: https://www.melcohit.com

Asia Pacific Headquarter

Climaveneta Chat Union Refrigeration Equipment (Shanghai) CO., LTD NO. 88 BAIYUN ROAD XINGHUO DEVELOPING ZONE, SHANGHAI, CHINA TEL: +86-21-57505566 FAX: +86-21-57505797

E-mail: http://www.climaveneta.com.cn

Hongkong Branch

ROOM 2003, CCT TELECOM BUILDING, 11 WO SHING STREET, FOTAN, SHATIN, N.T., HONGKONG

TEL: +852-26871755 FAX: +85-2-26873078

E-mail: http://www.climaveneta.com

Vietnam Branch

2nd Floor, Room 2.7A, Etown1, 364 Cong Hoa Str., Ward 13, Tan Binh District, Hochiminh City Tel: +8428 62629966 Fax: +8428 62629977 E-mail: http://www.climaveneta.com

Malaysia Branch

A-4-3, GARDEN SHOPPE ONE CITY, JALAN USJ 25/1, 47650 SUBANG JAYA, SELANGOR DARUL EHSAN TEL: +603 8081 8558 FAX: +603 8081 9558

E-mail: http://www.climaveneta.com

Myanmar Branch

ROOM 501, 5TH FLOOR, SALOMON BUSINESS CENTER, NO 244/A, U WISARA ROAD, BAHAN TOWNSHIP, YANGON

Tel: +951535098 Ext: 501

E-mail: http://www.climaveneta.com